Derivative-free error bounds for interpolation formulae
نویسندگان
چکیده
منابع مشابه
Error Bounds for Gauss-kronrod Quadrature Formulae
The Gauss-Kronrod quadrature formula Qi//+X is used for a practical estimate of the error R^j of an approximate integration using the Gaussian quadrature formula Q% . Studying an often-used theoretical quality measure, for ߣ* , we prove best presently known bounds for the error constants cs(RTMx)= sup \RlK+x[f]\ ll/(l»lloo<l in the case s = "Sn + 2 + tc , k = L^J LfJ • A comparison with the Ga...
متن کاملError bounds for anisotropic RBF interpolation
We present error bounds for the interpolation with anisotropically transformed radial basis functions for both function and its partial derivatives. The bounds rely on a growth function and do not contain unknown constants. For polyharmonic basic functions in R we show that the anisotropic estimates predict a significant improvement of the approximation error if both the target function and the...
متن کاملError Bounds for Polynomial Spline Interpolation
New upper and lower bounds for the L2 and Vo norms of derivatives of the error in polynomial spline interpolation are derived. These results improve corresponding results of Ahlberg, Nilson, and Walsh, cf. [1], and Schultz and Varga, cf. [5].
متن کاملError bounds for Gauss-Tur'an quadrature formulae of analytic functions
We study the kernels of the remainder term Rn,s(f) of GaussTurán quadrature formulas ∫ 1 −1 f(t)w(t) dt = n ∑
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 1972
ISSN: 0862-7940,1572-9109
DOI: 10.21136/am.1972.103402